Comparison of Culture and Molecular Techniques to Identify the Microbiological Etiology of Severe Pneumonia in Children: Impact on New Vaccine Development

A. Arrieta¹, A. Blaschke², K. Ampofo², S. Osborne¹, D.J. Nieves¹, J. Christiansen².
¹Children’s Hospital of Orange County/University of California- Irvine, Pediatric/Infectious Diseases, Orange, USA.
²University of Utah School of Medicine, Pediatrics and Pediatric Infectious Diseases, Salt Lake, USA.

INTRODUCTION

Pneumonia is the most common cause of mortality in children < 5 years (non neonatal). Streptococcus pneumoniae is the most common etiology of severe bacterial pneumonia in children and the most common cause of vaccine preventable pneumonia. New conjugate vaccines (PCV) were developed in response to the emergence of non-pcv-7 serotypes. Early reports suggest introduction of pcv-13 had significantly decrease invasive pneumococcal disease (IPD). Microbiological diagnosis of pneumonia is uncommon as cultures are often negative. Empyema (R-IPD) often complicates severe pneumonia, microbiological diagnosis will enhance understanding of the changes PCV 13 and provide information for vaccine development.

OBJECTIVES

Determine the changes over time in incidence of S pneumoniae empyema by culture and molecular techniques (PCR)

METHODS

Prospective surveillance study of IPD in Orange county, California in a collaboration between our institution (CHOC) and the Orange County Healthcare Agency (OCHA). All S pneumoniae isolates recovered from children < 18 years old sent to the OCHA where demographic, and clinical data was obtained. Isolates were sent to CHOC for susceptibility and serotyping by Quellung.

To evaluate R-IPD we collected pleural fluid from children at CHOC with community acquired empyema (received a video assisted thoracoscopic). After consent, an aliquot of pleural fluid was collected for culture. All patients receive blood culture also. An aliquot of culture negative pleural fluid was be sent to the University of Utah for PCR testing by Film Array.

RESULTS

During the study period we identified 60 patients with empyema

Microbiology:

By culture:

19 (31.7%) subjects had positive cultures (including one for M tuberculosis which was excluded from further analysis)

By PCR:

testing was added, 38 pathogens were identified.

During study period 31 non-respiratory IPD were identified; 5 (16.1%) were PCV 13 serotype; 5/9 R-IPD identified. There were a total of 40 pathogens identified; 2 were not available for PCR so there were only 38 bacterial empyema when tested with the ‘god standard’ (PCR). No pathogen was identified by culture only (PCR 100% sensitive); no positive PCR had a different pathogen identified by culture (specificity 100%).

Pneumococcus was identified in 27/51 specimens available for PCR; 18 by PCR only

The sensitivity of culture to identify any bacterial organism remains the most common pathogen S pneumoniae when using PCR as the gold standard.

The sensitivity of culture to identify pneumococcal empyema is 33.3%

During study period 31 non-respiratory IPD were identified; 5 (16.1%) were PCV13 serotype; 5/9 R-IPD (55.6%) were PCV13 serotypes.

CONCLUSION

S pneumoniae remains the most common pathogen responsible of severe pneumonia identified by culture (31.7%) or PCR (52.9%)

The sensitivity of culture to identify any bacterial pathogens is low (44.7%) and even lower (33.3%) for S pneumoniae when using PCR as the gold standard.

The larger proportion of PCV13 serotypes identified in respiratory IPD compared to non-respiratory IPD may be misleading.

Use of PCR or other molecular techniques will be necessary if new pneumococcal conjugate vaccines are to be developed to target prevention or severe pneumonia in children.